Carbon capture and microfluidic technology: helping reduce CO2 emissions

Buried beneath the headlines of COVID-19 lies another global crisis. While tensions around restarting national economies increase, parallelly carbon emissions continue to predominate as an environmental stressor, accenting the need for countries to incorporate sustainability principles into their recovery plans. Despite the clean energy sector’s altruistic intentions, the infrastructure needed to transition to net-zero technology is still in its rudimentary stages. Thus, it has become apparent that the transition from fossil fuels to other energy sources will not be carried out imminently and will likely occur over the next several decades.

This emphasizes the importance of technologies such as carbon capture. Which will allow us to address global COlevels by converting excess industrial carbon to value-added products or sequestering it and utilizing it as part of processes like CO2 enhanced oil recovery (EOR), which lowers the carbon footprint of fossil fuels while continuing to meet the world’s energy demands[1].

This process in itself is arduous, involving injecting COinto underground geological formations such as abandoned gas fields and oil reservoirs, but the overall recovery rate is influenced by both the density and viscosity of the CO2. Scientifically, it is known that if we increase the viscosity of CO2 before its injection via adding surfactants to create a CO2– foam, we can trap CO2 in situ by reducing its mobility and increasing its contact with saline water, in turn increasing the amount of dissolved CO2 in the brine[2,3].

As geological site composition can vary globally, companies must carry out extensive testing and make hefty financial investments to optimize formulations for foam stability. Traditional testing of core flooding and loop rheometer analysis comes with additional caveats requiring large fluid sample volumes and taking days to weeks to complete.

This is where Interface Fluidics has poised itself as a leader in this space. By employing microfluidic technology, surfactant screening can be condensed into the palm of a technician’s hand. This microfluidic chip design can be used to screen various supercritical CO2 surfactant foams at differing conditions simultaneously, ultimately helping make formulation decisions quicker while reducing the amount of reservoir sample required to only a few milliliters[4].

A recent study has shown that the chip can be employed as a reservoir analog and could be used for foam screening at high temperatures and pressures liken to reservoirs. In total, six commercially available surfactants were screened for optimal performance. Sensitivity analysis was then performed on the leading contenders to determine the optimal concentration of surfactant required for optimum foam stability. These results aligned with conventional rheology measurements but had the added benefit of providing more representative porescale foam stability analysis when examining factors such as half-life[4].

With the federal government committing to net zero emissions by 2050, companies will have to emerge from the pandemic ready to employ an innovative mindset. Interface Fluidics is enabling this by providing cutting-edge technology that can not only help produce cleaner, more sustainable fossil fuels via carbon sequestration but by helping them do it in the most efficient means possible.


Written by

Miranda Stahn

As a science communicator, I have centralized my career around ensuring companies like Interface Fluidics can effectively communicate their innovations to the larger ecosystem. Be it working for large corporations or not for profits, I have always been passionate about ensuring great scientists get the support they need to take their ideas to the next level. My technical background involved a BSc and MSc completed at the University of Alberta, with my research interests spanning from traditional cell biology to biomanufacturing and clean technology development for the energy sector.

Related Posts

lab on a chip for oil and gas
Microfluidics for Energy


Imagine a laboratory with liters of reagents and samples, where each operation takes place in individual vessels and instruments. What if all of the laboratory

Read More »